

gordon-janitor: Reconciliation Service for Gordon

Cloud DNS reconciliation - a service that checks cloud DNS records against a source of truth and submits corrections to gordon [https://github.com/spotify/gordon].

Release v0.0.1.dev7 (What’s new?).

Warning

This is still in the planning phase and under active development. Gordon-Janitor should not be used in production, yet.

Requirements

	Python 3.6

Support for other Python versions may be added in the future.

Development

For development and running tests, your system must have all supported versions of Python installed. We suggest using pyenv [https://github.com/yyuu/pyenv].

Setup

$ git clone git@github.com:spotify/gordon-janitor.git && cd gordon-janitor
make a virtualenv
(env) $ pip install -r dev-requirements.txt

Running tests

To run the entire test suite:

outside of the virtualenv
if tox is not yet installed
$ pip install tox
$ tox

If you want to run the test suite for a specific version of Python:

outside of the virtualenv
$ tox -e py36

To run an individual test, call pytest directly:

inside virtualenv
(env) $ pytest tests/test_foo.py

Build docs

To generate documentation:

(env) $ pip install -r docs-requirements.txt
(env) $ cd docs && make html # builds HTML files into _build/html/
(env) $ cd _build/html
(env) $ python -m http.server $PORT

Then navigate to localhost:$PORT!

To watch for changes and automatically reload in the browser:

(env) $ cd docs
(env) $ make livehtml # default port 8888
to change port
(env) $ make livehtml PORT=8080

Code of Conduct

This project adheres to the Open Code of Conduct [https://github.com/spotify/code-of-conduct/blob/master/code-of-conduct.md]. By participating, you are expected to honor this code.

User’s Guide

	Configuring the Gordon Janitor Service

	Gordon Janitor’s Plugin System

	Plugin Interfaces

	API Reference

Project Information

	License and Credits

	How to Contribute

	Changelog

Indices and tables

	Index

	Module Index

	Search Page

Configuring the Gordon Janitor Service

Example Configuration

An example of a gordon-janitor.toml file:

Gordon Janitor Core Config
[core]
plugins = ["foo.plugin"]
debug = false

[core.logging]
level = "info"
handlers = ["syslog"]

Plugin Config
["foo"]
global config to the general "foo" package
bar = baz

["foo.plugin"]
specific plugin config within "foo" package
baz = bla

You may choose to have a gordon-janitor-user.toml file for development. All tables are deep merged into gordon-janitor.toml, to limit the amount of config duplication needed. For example, you can override core.debug without having to redeclare which plugins you’d like to run.

[core]
debug = true

[core.logging]
level = "debug"
handlers = ["stream"]

Supported Configuration

The following sections are supported:

core

	
plugins=LIST-OF-STRINGS

	Plugins that the Gordon Janitor service needs to load. If a plugin is not listed, the Janitor will skip it even if there’s configuration.

The strings must match the plugin’s config key. See the plugin’s documentation for config key names.

	
debug=true|false

	Whether or not to run the Gordon Janitor service in debug mode.

If true, the Janitor will continue running even if installed & configured plugins can not be loaded. Plugin exceptions will be logged as warnings with tracebacks.

If false, the Janitor will exit out if it can’t load one or more plugins.

core.logging

	
level=info(default)|debug|warning|error|critical

	Any log level that is supported by the Python standard logging [https://docs.python.org/3/library/logging.html#module-logging] library.

	
handlers=LIST-OF-STRINGS

	handlers support any of the following handlers: stream, syslog, and stackdriver. Multiple handlers are supported. Defaults to syslog if none are defined.

Note

If stackdriver is selected, ulogger[stackdriver] needs to be installed as its dependencies are not installed by default.

Gordon Janitor’s Plugin System

Module for loading plugins distributed via third-party packages.

Plugin discovery is done via entry_points defined in a package’s
setup.py, registered under 'gordon.plugins'. For example:

setup.py
from setuptools import setup

setup(
 name=NAME,
 # snip
 entry_points={
 'gordon.plugins': [
 'gcp.gpubsub = gordon_gcp.gpubsub:EventClient',
 'gcp.gce.a = gordon_gcp.gce.a:ReferenceSourceClient',
 'gcp.gce.b = gordon_gcp.gce.b:ReferenceSourceClient',
 'gcp.gdns = gordon_gcp.gdns:DNSProviderClient',
],
 },
 # snip
)

Plugins are initialized with any config defined in gordon-user.toml
and gordon.toml. See Configuring the Gordon Janitor Service for more details.

Once a plugin is found, the loader looks up its configuration via the
same key defined in its entry point, e.g. gcp.gpubsub.

The value of the entry point (e.g. gordon_gcp.gpubsub:EventClient)
must point to a class. The plugin class is instantiated with its config.

A plugin will not have access to another plugin’s configuration. For
example, the gcp.gpusub will not have access to the configuration
for gcp.gdns.

See Gordon Janitor’s Plugin System for details on how to write a plugin for Gordon.

	
gordon.plugins_loader.load_plugins(config, plugin_kwargs)

	Discover and instantiate plugins.

	Parameters

	
	config (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – loaded configuration for the Gordon service.

	plugin_kwargs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – keyword arguments to give to plugins
during instantiation.

	Returns

	list of names of plugins, list of
instantiated plugin objects, and any errors encountered while
loading/instantiating plugins. A tuple of three empty lists is
returned if there are no plugins found or activated in gordon
config.

	Return type

	Tuple of 3 lists

Writing a Plugin

Todo

Add documentation once interfaces are firmed up

Plugin Interfaces

Interface definitions for Gordon Janitor Plugins.

Please see Gordon Janitor’s Plugin System for more information on writing a plugin for
the Gordon Janitor service.

	
interface gordon_janitor.interfaces.IAuthority(config, rrset_channel, metrics=None)

	Scan source of truth(s) of hosts and emit messages to Reconciler.

The purpose of this client is to consult a source of truth, for
example, the list instances APIs in Google Compute Engine or AWS
EC2, or consulting one’s own database of hosts. A message per DNS
zone with every instance record (per service owner’s own
requirements) will then be put onto the rrset_channel queue for
a Reconciler to - you guessed it - reconcile.

	Parameters

	
	config (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Authority-specific configuration.

	rrset_channel (asyncio.Queue [https://docs.python.org/3/library/asyncio-queue.html#asyncio.Queue]) – queue to put record set messages
for later validation.

	metrics (obj) – Optional object to emit Authority-specific
metrics.

	
run()

	Start plugin in the main event loop.

Once required work is all processed, cleanup() needs to
be called.

	
cleanup()

	Cleanup once plugin-specific work is cleanup.

Cleanup work might include allowing outstanding asynchronous
Python tasks to finish, cancelling them if they extend beyond a
desired timeout, and/or closing HTTP sessions.

	
interface gordon_janitor.interfaces.IGenericPlugin(config, **plugin_kwargs)

	Do not implement this interface directly.

Use IAuthority, IReconciler, or
IPublisher instead.

	Parameters

	
	config (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Plugin-specific configuration.

	plugin_kwargs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Plugin-specific keyword arguments. See
specific interface declarations.

	
run()

	Start plugin in the main event loop.

Once required work is all processed, cleanup() needs to
be called.

	
cleanup()

	Cleanup once plugin-specific work is cleanup.

Cleanup work might include allowing outstanding asynchronous
Python tasks to finish, cancelling them if they extend beyond a
desired timeout, and/or closing HTTP sessions.

	
interface gordon_janitor.interfaces.IPublisher(config, changes_channel, metrics=None)

	Publish change messages to the pub/sub Gordon consumes.

Clients that implement IPublisher will consume from the
changes_channel queue and publish the message to the
configured pub/sub for which Gordon [https://github.com/spotify/gordon] subscribes.

	Parameters

	
	config (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Publisher-specific configuration.

	changes_channel (asyncio.Queue [https://docs.python.org/3/library/asyncio-queue.html#asyncio.Queue]) – queue to consume the
corrective messages needing to be published.

	metrics (obj) – Optional object to emit Publisher-specific
metrics.

	
run()

	Start plugin in the main event loop.

Once required work is all processed, cleanup() needs to
be called.

	
cleanup()

	Cleanup once plugin-specific work is cleanup.

Cleanup work might include allowing outstanding asynchronous
Python tasks to finish, cancelling them if they extend beyond a
desired timeout, and/or closing HTTP sessions.

	
interface gordon_janitor.interfaces.IReconciler(config, rrset_channel, changes_channel, metrics=None)

	Validate current records in DNS against desired Authority.

Clients that implement IReconciler will create a change
message for the configured IPublisher client plugin to
consume if there is a discrepancy between records in DNS and the
desired state.

Once validation is done, the IReconciler client will
need to emit a None message to the changes_channel
queue, signalling to an IPublisher client to publish the
message to a pub/sub to which Gordon [https://github.com/spotify/gordon] subscribes.

	Parameters

	
	config (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Reconciler-specific configuration.

	rrset_channel (asyncio.Queue [https://docs.python.org/3/library/asyncio-queue.html#asyncio.Queue]) – queue from which to consume
record set messages to validate.

	changes_channel (asyncio.Queue [https://docs.python.org/3/library/asyncio-queue.html#asyncio.Queue]) – queue to publish corrective
messages to be published.

	metrics (obj) – Optional object to emit Reconciler-specific
metrics.

	
run()

	Start plugin in the main event loop.

Once required work is all processed, cleanup() needs to
be called.

	
cleanup()

	Cleanup once plugin-specific work is cleanup.

Cleanup work might include allowing outstanding asynchronous
Python tasks to finish, cancelling them if they extend beyond a
desired timeout, and/or closing HTTP sessions.

API Reference

main

Main module to run the Gordon Janitor service.

The service expects a gordon-janitor.toml and/or a
gordon-janitor-user.toml file for configuration in the current
working directory, or in a provided root directory.

Any configuration defined in gordon-janitor-user.toml overwrites
those in gordon-janitor.toml.

Example:

$ python gordon_janitor/main.py
$ python gordon_janitor/main.py -c /etc/default/
$ python gordon_janitor/main.py --config-root /etc/default/

	
gordon_janitor.main.setup(config_root='')

	Service configuration and logging setup.

Configuration defined in gordon-janitor-user.toml will overwrite
gordon-janitor.toml.

	Parameters

	config_root (str [https://docs.python.org/3/library/stdtypes.html#str]) – where configuration should load from,
defaults to current working directory.

	Returns

	A dict for Gordon service configuration

	
gordon_janitor.main.setup(config_root='')

	Service configuration and logging setup.

Configuration defined in gordon-janitor-user.toml will overwrite
gordon-janitor.toml.

	Parameters

	config_root (str [https://docs.python.org/3/library/stdtypes.html#str]) – where configuration should load from,
defaults to current working directory.

	Returns

	A dict for Gordon service configuration

plugins_loader

Module for loading plugins distributed via third-party packages.

Plugin discovery is done via entry_points defined in a package’s
setup.py, registered under 'gordon.plugins'. For example:

setup.py
from setuptools import setup

setup(
 name=NAME,
 # snip
 entry_points={
 'gordon.plugins': [
 'gcp.gpubsub = gordon_gcp.gpubsub:EventClient',
 'gcp.gce.a = gordon_gcp.gce.a:ReferenceSourceClient',
 'gcp.gce.b = gordon_gcp.gce.b:ReferenceSourceClient',
 'gcp.gdns = gordon_gcp.gdns:DNSProviderClient',
],
 },
 # snip
)

Plugins are initialized with any config defined in gordon-user.toml
and gordon.toml. See Configuring the Gordon Janitor Service for more details.

Once a plugin is found, the loader looks up its configuration via the
same key defined in its entry point, e.g. gcp.gpubsub.

The value of the entry point (e.g. gordon_gcp.gpubsub:EventClient)
must point to a class. The plugin class is instantiated with its config.

A plugin will not have access to another plugin’s configuration. For
example, the gcp.gpusub will not have access to the configuration
for gcp.gdns.

See Gordon Janitor’s Plugin System for details on how to write a plugin for Gordon.

	
gordon.plugins_loader.load_plugins(config, plugin_kwargs)

	Discover and instantiate plugins.

	Parameters

	
	config (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – loaded configuration for the Gordon service.

	plugin_kwargs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – keyword arguments to give to plugins
during instantiation.

	Returns

	list of names of plugins, list of
instantiated plugin objects, and any errors encountered while
loading/instantiating plugins. A tuple of three empty lists is
returned if there are no plugins found or activated in gordon
config.

	Return type

	Tuple of 3 lists

	
gordon.plugins_loader.load_plugins(config, plugin_kwargs)

	Discover and instantiate plugins.

	Parameters

	
	config (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – loaded configuration for the Gordon service.

	plugin_kwargs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – keyword arguments to give to plugins
during instantiation.

	Returns

	list of names of plugins, list of
instantiated plugin objects, and any errors encountered while
loading/instantiating plugins. A tuple of three empty lists is
returned if there are no plugins found or activated in gordon
config.

	Return type

	Tuple of 3 lists

License and Credits

gordon-janitor is licensed under the Apache 2.0 [http://www.apache.org/licenses/LICENSE-2.0] license.
The full license text can be also found in the source code repository [https://github.com/spotify/gordon-janitor/blob/master/LICENSE].

How to Contribute

Every open source project lives from the generous help by contributors that sacrifice their time and gordon-janitor is no different.

This project adheres to the Open Code of Conduct [https://github.com/spotify/code-of-conduct/blob/master/code-of-conduct.md]. By participating, you are expected to honor this code. If the core project maintainers/owners feel that this Code of Conduct has been violated, we reserve the right to take appropriate action, including but not limited to: private or public reprimand; temporary or permanent ban from the project; request for public apology.

Communication/Support

Feel free to drop by the Spotify FOSS Slack organization [https://slackin.spotify.com/] in the #gordon channel.

Contributor Guidelines/Requirements

Contributors should expect a response within one week of an issue being opened or a pull request being submitted. More time should be allowed around holidays. Feel free to ping your issue or PR if you have not heard a timely response.

Submitting Bugs

Before submitting, users/contributors should do the following:

	
	Basic troubleshooting:

	
	Make sure you’re on the latest supported version. The problem may be solved already in a later release.

	Try older versions. If you’re on the latest version, try rolling back a few minor versions. This will help maintainers narrow down the issue.

	Try the same for dependency versions - up/downgrading versions.

	Search the project’s issues to make sure it’s not already known, or if there is already an outstanding pull request to fix it.

	If you don’t find a pre-existing issue, check the discussion on Slack. There may be some discussion history, and if not, you can ask for help in figuring out if it’s a bug or not.

What to include in a bug report:

	What version of Python is being used? i.e. 2.7.13, 3.6.2, PyPy 2.0

	What operating system are you on? i.e. Ubuntu 14.04, RHEL 7.4

	What version(s) of the software are you using?

	How can the developers recreate the bug? Steps to reproduce or a simple base case that causes the bug is extremely helpful.

Contributing Patches

No contribution is too small. We welcome fixes for typos and grammar bloopers just as much as feature additions and fixes for code bloopers!

	Check the outstanding issues and pull requests first to see if development is not already being done for what you which to change/add/fix.

	If an issue has the available label on it, it’s up for grabs for anyone to work on. If you wish to work on it, just comment on the ticket so we can remove the available label.

	Do not break backwards compatibility.

	Once any feedback is addressed, please comment on the pull request with a short note, so we know that you’re done.

	Write good commit messages [http://tbaggery.com/2008/04/19/a-note-about-git-commit-messages.html].

Workflow

	This project follows the gitflow [http://nvie.com/posts/a-successful-git-branching-model/] branching model. Please name your branch accordingly.

	Always make a new branch for your work, no matter how small. Name the branch a short clue to the problem you’re trying to fix or feature you’re adding.

	Ideally, a branch should map to a pull request. It is possible to have multiple pull requests on one branch, but is discouraged for simplicity.

	Do not submit unrelated changes on the same branch/pull request.

	Multiple commits on a branch/pull request is fine, but all should be atomic, and relevant to the goal of the PR. Code changes for a bug fix, plus additional tests (or fixes to tests) and documentation should all be in one commit.

	Pull requests should be rebased off of master.

	To finish and merge a release branch, project maintainers should first create a PR to merge the branch into develop. Then, they should merge the release branch into master locally and push to master afterwards.

	Bugfixes meant for a specific release branch should be merged into that branch through PRs.

Code

	See docs on how to setup your environment for development.

	Code should follow the Google Python Style Guide [https://google.github.io/styleguide/pyguide.html].

	
	Documentation is not optional.

	
	Docstrings are required for public API functions, methods, etc. Any additions/changes to the API functions should be noted in their docstrings (i.e. “added in 2.5”)

	If it’s a new feature, or a big change to a current feature, consider adding additional prose documentation, including useful code snippets.

	
	Tests aren’t optional.

	
	Any bug fix should have a test case that invokes the bug.

	Any new feature should have test coverage hitting at least $PERCENTAGE.

	Make sure your tests pass on our CI. You will not get any feedback until it’s green, unless you ask for help.

	Write asserts as “expected == actual” to avoid any confusion.

	Add good docstrings for test cases.

Github Labels

The super secret decoder ring for the labels applied to issues and pull requests.

Triage Status

	needs triaging: a new issue or pull request that needs to be triaged by the goalie

	no repro: a filed (closed) bug that can not be reproduced - issue can be reopened and commented upon for more information

	won’t fix: a filed issue deemed not relevant to the project or otherwise already answered elsewhere (i.e. questions that were answered via linking to documentation or stack overflow, or is about GCP products/something we don’t own)

	duplicate: a duplicate issue or pull request

	waiting for author: issue/PR has questions or requests feedback, and is awaiting the other for a response/update

Development Status

To be prefixed with Status:, e.g. Status: abandoned.

	abandoned: issue or PR is stale or otherwise abandoned

	available: bug/feature has been confirmed, and is available for anyone to work on (but won’t be worked on by maintainers)

	blocked: issue/PR is blocked (reason should be commented)

	completed: issue has been addressed (PR should be linked)

	wip: issue is currently being worked on

	on hold: issue/PR has development on it, but is currently on hold (reason should be commented)

	pending: the issue has been triaged, and is pending prioritization for development by maintainers

	review needed: awaiting a review from project maintainers

Types

To be prefixed with Type: e.g. Type: bug.

	bug: a bug confirmed via triage

	feature: a feature request/idea/proposal

	improvement: an improvement on existing features

	maintenance: a task for required maintenance (e.g. update a dependency for security patches)

	extension: issues, feature requests, or PRs that support other services/libraries separate from core

Local Development Environment

TODO

Changelog

0.0.1.dev7 (2018-11-15)

Adds

End of run log message, metric

Fixes

	Correctly handle plugin loader errors

	Deep merge user config file when used

0.0.1.dev6 (2018-09-07)

Changes

Bump Gordon core version requirement

0.0.1.dev5 (2018-08-09)

Changes

Import plugins_loader from Gordon to obtain metrics client

0.0.1.dev3 (2018-03-22)

Changes

Rename interface methods.

0.0.1.dev1 (2018-02-27)

Changes

Initial development release.

 Python Module Index

 g

 		 	

 		
 g	

 	[image: -]
 	
 gordon	

 	
 	
 gordon.plugins_loader	

 	[image: -]
 	
 gordon_janitor	

 	
 	
 gordon_janitor.interfaces	

 	
 	
 gordon_janitor.main	

Index

 C
 | D
 | G
 | H
 | I
 | L
 | P
 | R
 | S

C

 	
 	cleanup() (gordon_janitor.interfaces.IAuthority method)

 	(gordon_janitor.interfaces.IGenericPlugin method)

 	(gordon_janitor.interfaces.IPublisher method)

 	(gordon_janitor.interfaces.IReconciler method)

 	
 	
 command line option

 	debug=true|false

 	handlers=LIST-OF-STRINGS

 	level=info(default)|debug|warning|error|critical

 	plugins=LIST-OF-STRINGS

D

 	
 	
 debug=true|false

 	command line option

G

 	
 	gordon.plugins_loader (module)

 	
 	gordon_janitor.interfaces (module)

 	gordon_janitor.main (module)

H

 	
 	
 handlers=LIST-OF-STRINGS

 	command line option

I

 	
 	IAuthority (gordon_janitor.interfaces interface)

 	IGenericPlugin (gordon_janitor.interfaces interface)

 	
 	IPublisher (gordon_janitor.interfaces interface)

 	IReconciler (gordon_janitor.interfaces interface)

L

 	
 	
 level=info(default)|debug|warning|error|critical

 	command line option

 	
 	load_plugins() (in module gordon.plugins_loader), [1]

P

 	
 	
 plugins=LIST-OF-STRINGS

 	command line option

R

 	
 	run() (gordon_janitor.interfaces.IAuthority method)

 	(gordon_janitor.interfaces.IGenericPlugin method)

 	(gordon_janitor.interfaces.IPublisher method)

 	(gordon_janitor.interfaces.IReconciler method)

S

 	
 	setup() (in module gordon_janitor.main), [1]

 _static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/file.png

_static/minus.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 gordon-janitor: Reconciliation Service for Gordon

 		
 Configuring the Gordon Janitor Service

 		
 Example Configuration

 		
 Supported Configuration

 		
 core

 		
 core.logging

 		
 Gordon Janitor’s Plugin System

 		
 Writing a Plugin

 		
 Plugin Interfaces

 		
 API Reference

 		
 main

 		
 plugins_loader

 		
 License and Credits

 		
 How to Contribute

 		
 Communication/Support

 		
 Contributor Guidelines/Requirements

 		
 Submitting Bugs

 		
 Contributing Patches

 		
 Github Labels

 		
 Local Development Environment

 		
 Changelog

 		
 0.0.1.dev7 (2018-11-15)

 		
 Adds

 		
 Fixes

 		
 0.0.1.dev6 (2018-09-07)

 		
 Changes

 		
 0.0.1.dev5 (2018-08-09)

 		
 Changes

 		
 0.0.1.dev3 (2018-03-22)

 		
 Changes

 		
 0.0.1.dev1 (2018-02-27)

 		
 Changes

_static/up-pressed.png

_static/up.png

_static/spotify_icon_green.png

